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This paper presents a numerical method directed towards the simulation of flows
with mass transfer due to changes of phase. We use a volume of fluid (VOF) based
interface tracking method in conjunction with a mass transfer model and a model
for surface tension. The bulk fluids are viscous, conducting, and incompressible. A
one-dimensional test problem is developed with the feature that a thin thermal layer
propagates with the moving phase interface. This test problem isolates the ability of
a method to accurately calculate the thermal layers responsible for driving the mass
transfer in boiling flows. The numerical method is tested on this problem and then
is used in simulations of horizontal film boiling.c 2000 Academic Press
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I. INTRODUCTION

Boiling flows are ubiquitous in the energy and processing industries due to the fact:
phase change processes are an efficient way to transport heat. Despite decades of re
there are still many aspects of boiling flows that are not well understood. The small spe
scales and fast time constants of many of the physical processes associated with b
hinder the acquisition of experimental data. During the last two decades computatic
methods have been developed to provide solutions for fluid flow problems with mov
interfaces separating gas and liquid phases. There is now a small but growing bod
literature on the application of these methods to boiling flows. Itis evident that these meth
will help provide insight into many aspects of boiling flows heretofore unattainable.

The computation of boiling flows remains one of the most challenging realms of com
tational fluid dynamics. These flows are characterized by the discontinuity across the p
interface of many of the flow variables. These discontinuities pose several computati
difficulties requiring special treatment. In addition, the location of the phase interface
not known a priori and must be found as part of the solution procedure. Early methods
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VOF METHOD FOR FLOWS WITH PHASE CHANGE 663

addressed these difficulties were of the Lagrangian type in which computational elem
move with the phase interface thereby enabling the special treatment of the region prox
to the phase interface. The papers of Son and Dhir [1] and of Welch [2] provide simulat
results in which itis clear that Lagrangian based methods have a limited applicability du
their inability to cope with gross interfacial motion or changes in interface topology. La
methods overcame this limitation by implementing Eulerian based approaches. Juric
Tryggvason [3] used source terms in the continuity equation and the energy equatic
an enhancement of the method of Unverdi and Tryggvason [4] to simulate horizontal |
boiling. Son and Dhir [5] used a similar idea in a modification of the level set method
Sussmaret al. [6] enabling them to perform simulations of axisymmetric horizontal filn
boiling. Their simulations of water near the critical state enabled them to provide a deta
description of the bubble release pattern during horizontal film boiling which corrobora
previous experimental results.

This purpose of this paper is to introduce a modification of the volume of fluid (VO
method suitable for the simulation of boiling flows. We feel that the VOF method has featt
that make it a viable option for simulations of the type discussed above. One desirable fe:
is that the interface is advected with a conservation equation. This results in calculat
that preserve the volumes of the two phases in flows without mass transfer. We note the
level set method of Sussmanal.[6], used by Son and Dhir [5], does not have this volum
preservation property. More recent level set implementations have addressed this pro
[7] through the addition of a volume preservation constraint and can likely be extendel
the mass transfer case. Another desirable feature is that the interfacial geometry asso
with the VOF method may be used to construct heat flux vectors on both the liquid and
vapor side of the interface that take into account the discontinuity of the conductivity ¢
of the temperature gradient. We note that similar calculations are possible with the leve
method as well as with the method of Tryggvason. A one-dimensional similarity soluti
will be presented that isolates the ability of a method to accurately calculate the ther
layers responsible for driving the mass transfer in boiling flows.

We consider incompressible Newtonian fluids with behavior described in both phase
the set of partial differential equations.

p(% +V-Vv> = —VP+pg+ V- [u(Vv+ (VV)")] Q)
V.v=0 (2)

v
pcp(at+v-w\ =V . (kV®) + . ©)

Here g is the gravitational force and, P, ¢y, p, ¥, u, Kk, and & are the fluid velocity,
pressure, specific heat, density, temperature, viscosity, conductivity, and viscous dissipe
respectively.

Il. SPECIAL TREATMENT OF THE INTERFACIAL REGIONS

Interface tracking. The presence of the two phases requires that some approach mu:
implemented to advect the phase interface. We advect the interface using Young’s enh:
ment [8] of the VOF method [9]. In our code, Young’s method is implemented at the e
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FIG. 1. Mixture cell with piecewise linear interface. Left, cell geometry; right, cell flux calculation.

of a time cycle to calculate the new density field using the conservation of mass stater
for each cell

ot
Ve &

B
2 pdV+/pv-ndS=0, (@)
whereV, is the cell volume an&: is the cell surface. Once the new cell densities are foun:

the cell void fractions are calculated

a=L"Ps (5)
Pl — Pg

Detailed description of Young’s method may be found in Refs. [10, 11]. Our implementat
of Young’s method may be summarized as the following sequence of steps.

(1) The phaseinterface is modeled as a piecewise linear curve. Figure 1 shows aty
two-phase cell with an embedded phase interface. The orientation of the curve within e
two-phase cell is determined by the unit normal vector,

n= E. (6)
[Vl
The gradients in this calculation use a nine-point stencil that is known to produce a ir
accurate normal vector [11].

(2) Given the orientation of the planar surface that represents the interface in a ¢
determine the location of the oriented surface such that the surface partitions the cell
liquid and gas regions of the correct volume based upon the void fraction (volume fract
of liquid) of the cell. These steps are often referred to as the interface reconstruction s
[11].

(3) Given the location of the planar interface in each two-phase cell and the velot
at a junction face between two cells, the mass flux is determined from simple volume
considerations. A typical geometric calculation of this sort is shown in Fig. 1. Once t
mass is fluxed across the cell boundaries in one direction, the interface is reconstru
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before mass is fluxed in the second direction. This approach is referred to as a dire
split approach [10].

Mass transfer. Mass transfer across the phase interface is modeled in a manner insg
by Juric and Tryggvason [3]. We consider a computational cell containing a volume of
liquid phase adjacent to a volume of the vapor phase. We may write a mass balance for
phase as

%/pdv+ /,ov-ndS+ /p(v—vs)-nd8=0 (7
Vg () S St
%/pdv+/pv~nd8— /p(v—vs)-ndS=O. (8)

Vi(t) SO S

HereV, S, Vg, andS, are the volume and surface of the liquid and vapor regions, respt
tively. § is the phase interface at the common boundary of the two regions, moving v
the velocity,vs. On S the normal vecton points into the liquid phase. Summing these
taking into account the incompressibility of each phase, and noting that the overall volt
is invariant we obtain the conservation of mass statement for the cell volume,

/v-ndS+ /||(v—v5)||-nd5=0. 9)
S S

Here, ||V || indicates the jump i across the phase interface é®ds the surface bounding
the computational cell. Use of the mass and energy jump conditions at the interface
lo(v—=vs)ll-n=0 (10)
loh(v = vo)ll - n= —[iq]l - n (11)

allows us to express the jump term in the conservation of mass equation as

1 1>IIQII-n

(v —vs)ll-n= (- - —
Iy Py hIg

(12)

Hereh is the enthalpy anblig = hg — h; is the latent heat of vaporization whigs the heat
flux vector. In this work, we consider the phase interface to be at the saturation temper:
of the liquid pressure

195 = ﬁsat(PI)- (13)

The set of equations, Eq. (11) through Eq. (13), incorporates various simplifying assu
tions. Surface properties other than surface tension are neglected. We neglect kinetic e
and viscous work terms as well as surface tension work terms in the energy jump anc
neglect the viscous dissipation in the energy equation. These are common approxima
in the analysis of liquid-vapor phase change phenomena [18] and have been used i
numerical studies of liquid-vapor phase change [1, 2, 5]. The temperature condition g
by Eq. (13) is a common approximation for which justification may be found in [5]. W
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note that there are various conditions other that Eqg. (13) appearing in the literature (
for example, Refs. [2, 3]) but the exact condition is still an open question of physics.
any rate, these simplifying assumptions leave us with a model that contains the domi
physics. The inclusion of terms resulting from the relaxation of these assumptions, sh
they be deemed important, is straightforward.

The energy jump condition indicates the dependence of the mass transfer rate acros
interface on the heat flux vector in the normal direction in both the liquid and vapor pha:
The heat flux vector will generally be discontinuous and any smoothing of this vector v
distort the mass transfer amount. We utilize the interface geometry associated with the
method to construct a proper heat flux jump source term for use in Eq. (12). By a pro
heat flux jump, we mean that the normal components of the temperature gradients
calculated without reaching across the phase interface. The required geometry is pro\
in the advection step described above and is shown in Fig. 1. Given the unit normalwgectc
and the parametey, which provides the location of the interface we apply the temperatu
condition, Eq. (13), to the point located at the center of the piecewise linear segment
interface point in Fig. 1). It is then a simple matter to calculate liquid side temperati
gradients as well as vapor side temperature gradients. We then are able to construct a
heat flux jump across the phase interface by multiplying the normal temperature gradi
in each phase by their corresponding conductivities. In addition, it is important that
cells proximal to the interface but not containing the phase interface see proper temper:
gradients in the convection and diffusion terms of the energy equations. We ensure thi
using the temperature gradients used in forming the energy jump condition to extrapc
liquid and vapor temperatures at mixture cell centers thus ensuring that the cells neighbc
mixture cells also see the proper temperature gradients.

Surface tension model.The momentum equations are augmented using the continu
surface tension model of Brackbét al.[12]

v - .
p(d)(g +V~Vv> =—-VP+p@)g+V:[u(@)(VV+ (VV) )] +okVa, (14)

whereax’is a smoothed void field ands the curvature of the surface defined by this smoothe
void field. Due to the smoothing, the surface tension force is applied to a transition reg
a few cells thick centered at the interface. The curvature calculation is implemented u:
second-order central differences and discussion on the effects of smoothing and on acc
maybe found in [12]. The density and viscosity vary with the void field as

p(@) = pa+ pg(l—a) (15)
w(@) = wa + png(l—a). (16)

The surface tension is constant in this formulation thus the method is not appropr
for flows in microgravitational environments in which the temperature dependence of
surface tension provides the driving impetus for fluid motion.

Summarizing these developments, for computational cells containing the phase intet
we use the augmented momentum equation, Eq. (14), the modified conservation of |
statement, Eqg. (9), and energy jump condition Eq. (11). The discontinuity of the veloc
field, the velocity gradients, and the viscosity in this formulation are treated by smooth
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which is a departure from the philosophy used in treating the discontinuous tempera
gradients and conductivity. The method presented in this paper is directed towards f
driven by mass transfer due to phase change which motivates the special treatment ¢
interfacial heat flux vector described above. Future efforts will address better the couplin
the discontinuities associated with the momentum equation to the discontinuities assoc
with the energy equation.

Ill. NUMERICAL APPROXIMATIONS

The spatial discretization of the governing partial differential equations is obtained us
a traditional MAC staggered grid [13] with scalars located at cell centers and veloc
components located at cell edges. All spatial derivatives are centered with the exceptic
the convection terms in the momentum and the energy equations. Due to the discounti
in velocity across the phase interface, the momentum convection terms are discre
using a second order ENO method [14]. The convection terms in energy are discret
using the Leonard method [15]. Note that a high-resolution scheme is not necessar
the energy equation, as we are not discretizing energy convection terms across the |
interface.

The temporal discretization may best be described as a semi-implicit forward EL
method. We begin a time cycle by solving the explicit energy equation in the bulk phas

n
oML — 9N 4 st {—V VO + ';vzﬁ} . (17)
PCp

The new temperature field is then used to form the interfacial heat flux jump appearin
the mass source term and the continuity and momentum equations are discretized in

as
1 1 n+1 .
/v“+l-nds+ /(—)”q”ndS:O (18)
g Ol Pg hlg

S

ot
VIt = v =5t (v V)" — — (VP 4 (p@)" + V- [u(VV 4 (VW) )]" + o (c Va)").

o

(19)

The new time velocity is eliminated from these discrete equations and the resulting pres
equation is solved by an interative method. The simulations in this paper use the ILU |
conditioned conjugate gradient squared (CGS) method of Sonneveld [16]. Once the

time pressure is obtained the new time velocity is found from the discrete moment
equations and the new density field is found from the discretization of Eq. (4)

o™ = p" 4 st / ov*l.nds (20)
S

As discussed earlier, Young’'s method is employed at this stage of the calculation. We
that cells that are not mixture cells or are not adjacent to mixture cells do not require
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calculation. Once the new density field is found, the new void fraction may be calcula
along with the mixture cell interfacial geometry.

The scheme we have just described is second order in space and first order in 1
The scheme has time step restrictions due to the explicit treatment of the convection
diffusion terms in the momentum and energy equations. The scheme also has a time
restriction due to the explicit treatment of the surface tension terms. This limit is usue
expressed as restricting a capillary wave in an infinite medium to travel no more than |
a cell width during a time step. This limit is generally the most restrictive of the three a
satisfaction of this limit often results in solutions that are converged in time, even witl
first-order method.

IV. ONE-DIMENSIONAL VERIFICATION PROBLEMS WITH MASS TRANSFER

The Stefan problem.We consider first the one-dimensional Stefan problem consider
by Son and Dhir [5] and shown in Fig. 2. The liquid and vapor are considered incompress
and are initially in quiescent equilibrium. The vapor experiences an increase in tempere
on the solid boundary and a thermal profile develops in the vapor driving mass transfe
the interface. In this flow, the vapor will be motionless while the liquid is pushed away frc
the solid boundary with the interface also moving away from the solid boundary. The lig
profiles are uniform and the energy equation in the vapor phase may be expressed as

v 3%y

Sp =2 0=x=8W, (21)

wheres (1) is the coordinate of the phase interface. The problem is closed with the bounc
conditions

P(X=38(1),t) = Jsar

(22)
14 (X =0, t) = Vwall
and the interfacial energy jump condition
a9
Pgushig = —ka— . (23)
X lx=s(t)
interface
liquid
interface vapor au
vapor liquid o= 12“' o= ﬂ(f’)t)
O=0(x,t) o=, Ve = =il
vy =0 v, =v,(t) _n;
n
—
Byt > Uy > \vs G
T
L x \V:(t) l_’ ¢
Stefan Problem Sucking Problem

FIG. 2. Left, domain definition for Stefan problem; right, domain definition for sucking interface problem.
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The Neumann solution to this one-phase Stefan problem may be shown to apply tc
flow considered here and is given by [17]

8(t) = 2xv/at (24)
_ Ysat — Vwall X
¥ (X, 1) = dwan + ( erf(x) )erf(zﬁ)a (25)

where erfx) is the error function and is a solution to the transcendental equation.

Cp(ﬁwall - ﬂsal)
hgv7T

We simulate this case using the properties of water at the three saturation pressures:
571.0, and 14044.0 kPa. These saturation pressures correspond to the denspy/raties
16052, 301.4, and 7.08, respectively. We use a grid spacingxof 0.1 mm and set only
the first computational cell to be vapor with the second cell being a two-phase cell.
temperature profiles are initialized as a simple linear profile with the wall temperature
to 25 K higher than the saturation temperature.

Figure 3 shows the liquid velocity as well as the interface position as functions of ti
for both the analytic solution and the simulation at each pressure. The simulation res
are in excellent agreement with the analytic solution despite the fact that so few ve
cells are used to describe the early time temperature profiles. This result is due the
that the analytic temperature solution is actually close to a linear function. In addition, 1

rexprderf(r) = (26)
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FIG. 3. Liquid velocity and interface position for Stefan problem. Top curve, R€di1 3 kPa; middle curve,
Psat=5710 kPa; bottom curve, Psat140440 kPa.
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analytic solution is characterized by an extensive thermal layer on the vapor side of
interface. Such a thermal layer poses little difficulty numerically in that the temperatt
gradient driving the mass transfer is easily resolved without requiring fine grid resoluti
The situation for boiling flows in which the mass transfer is driven by temperature gradie
associated with thin thermal layers will be more computationally challenging. With this
mind we present a one-dimensional test case in which a thin thermal layer on the liquid
drives the mass transfer.

The sucking interface problemWe consider a one-dimensional flow in which the liquid
and vapor phases are incompressible. The problem configuration is shown in Fig. 2 an
note that the vapor phase is motionless, existing at the saturation temperature while the |
phase will move at a uniform velocity and exist in a metastable state at a distance remq
from the phase interface. This situation will result in a thin thermal layer moving with tl
interface. The diffusive spreading of the thermal layer will be counteracted somewhat t
sucking of the thermal layer towards the interface thus the thermal layer will tend to remn
thin.

We make the following transformation of the spatial coordinate

t
E—x— / us(t) dt. (27)
0

This transformation defines the coordinatsuch that the interface is locatedtat 0. The
energy equation in the liquid phase transforms to

av av 829
V) — = —— 2
ot + (v —vs) ot o 227 (28)

with boundary and initial conditions
19(5 =0, t) = Dsat
D(E — o0, 1) = U (29)
ﬁ(ést = 0) = 1}07

whered, is the liquid temperature in the bulk phase ahg is the saturation temperature.
At the interface we have the energy and mass jump conditions

v
_kZZ

p(v — vs)hig = 98 |so (30)
—pgVs = p(vs — V). (31)
Defining the constants
B= % gt c-_K (32)
Cs ol Pghig

and using the mass jump condition to eliminate the liquid velocity we arrive at a simplifi
energy equation for the liquid side

BLs BLs 929

g—ﬁvsg =a@, (33)
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where the interface velocity is given by

vs=C—| . (34)

1=\ 5 (35)
and implementing the transformation
(X, 1) = Bo(n). (36)
This leads to the ordinary differential equation defining our similarity solution
"+ (n+¢'0)¢' =0 (37)
with transformed boundary conditions
Bo(n =0) = Vsa 38)

Bo(n — 00) = U

This non-linear ordinary differential equation must be solved numerically and in t
results that follow care was taken to ensure that a converged solution was used for
parison purposes. Once obtaingdy) provides the thermal profile as well as the interfac
and liquid velocities for arbitrary fluid properties and arbitrary times.

We simulate this problem with our method using the properties of water at the satura
pressure of 1 atm. We start our simulations by initializing the liquid temperature pro
to the temperature profile of the similarity solution at 0.1 s. The grid spacing used in
simulations employs three successively refined grids. The coarse resolution grid has a
spacing ofAx = 0.2 mm. The medium and fine resolution grids have mesh spacing ef
0.1 mm andAx = 0.05 mm, respectively. The initial thermal layer thickness is 0.476 mi
thus the successive grids capture the initial thermal layer with approximately three ¢
five cells, and ten cells, respectively. Figure 4 shows the resulting liquid speed and inter
positions with respect to time for the three grid resolutions. Figure 5 shows the tempera
profile at the terminal time (1.1 s) of the simulation.

The simulation results indicate that the fine grid solution has converged and that
temperature profile, the interface position, and the liquid speed are accurately calculate
particular we note that the curvature of the temperature profile as well as the discontint
temperature gradient are accurately calculated. The three differing resolution grids ma
used to obtain estimates for the order of the method using the computed interface pos
liquid velocity, and temperature gradient at the interface. The resulting estimates for
order of the method are 1.42, 2.05, and 2.12, respectively. This test problem provide
indication of the ability of the method to follow a thin thermal layer moving with th
interface thus accurately calculating the temperature gradients responsible for the |
transfer across the interface.
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V. SIMULATION OF HORIZONTAL FILM BOILING

The regimes associated with boiling liquids situated above heated walls are ustL
describedinterms of a“boiling curve”[18]. Briefly, for low wall superheat (wall temperatu
above the saturation temperature at the system pressure), the liquid does not vaporiz
the regime is termed the convective heat transfer regime. As the wall superheat is incre:
nucleation sites start to appear and individual bubbles start to form and leave the wall di
bouyancy forces. This region is known as the nucleate boiling regime. As the wall super|
is increased the bubbles begin to coalesce on the surface and we enter a regime in \
large portions of the heated surface are covered with vapor. This region is known as 1
developed nucleate boiling and for high enough wall superheat, transition boiling (transi
refers to transition from fully developed nucleate boiling to film boiling). Finally for higt
enough wall superheat, the entire surface is immersed in vapor and we have entered a r
known as film boiling. Film boiling is particularly amenable to numerical simulation as tl
difficulties associated with modeling a contact line (the curve defined by the intersectio
the phase interface and the solid wall) do not exist. There exists a handful of correlation:
the case of a horizontal film boiling and these correlations generally assume some sc
vapor bubble release mechanism for the vapor as it leaves the film and is removed due f
buoyant forces. One such correlation due to Berenson [19] assumes that the vapor bu
are spaced in a square pattern separated by a distance equivalent to the most dan
Taylor wavelength given by

1/2
o = 27 (37“> . (39)
(o1 — pg)Qy

His correlation also assumes a uniform film thickness and a bubble diameter and heigh
are proportional to the bubble spacing. Conservation of mass and momentum in the v
film as well as the assumption that heat is transferred across the film due to conduction
enabled him to arrive at an expression for the Nusselt number

_ 1/4
Nu = o.425( Pa(P1 = Pg)GyMig ) (ho)¥4. (40)
kgﬂg[ﬁwall — Vsadl

This correlation and the physical situation modeled by it are inherently three-dimensio
We will present two-dimensional simulations with the understanding that the numers
results cannot completely capture the physics of three-dimensional film boiling but th
simulations do present useful test problems with which to develop methods directed tow
simulating flows with mass transfer. We note also that there are correlations in the litera
thought to be more accurate than the Berenson correlation [18]. We do not expect that
dimensional simulations can predict Nusselt numbers with the fidelity necessary to rec
comparison to the more accurate correlations.

We consider a two-phase fluid with surface tensioe: 0.1 N/m, latent heath,y =
10.0 kJ/kg, saturation pressuf®,=1.0135x 10° Pa, and saturation temperatutg,=
500 K. The liquid properties used aie=40.0 W/m-K, i =0.1 Pa:s, p, = 2000 kg/n?,
Cp =4000 J/kg- K, and the vapor properties used &ge=1.0 W/m- K, ny=0.005 Pas,
Cpg =2000 J/kg- K, pg=5.0 kg/m?. The high mechanical and thermal diffusivities are
used as the corresponding low cell Reynolds and Peclet numbers allow for the demor
tion of the convergence of the method on a relatively coarse sequence of computati
grids. We take advantage of the symmetry in the problem and use a computational do
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with width 1,/2 and heights of eitheri3/2 or 3i,. We consider the left and right vertical
boundaries to be symmetry boundaries. The bottom boundary is considered a no-slip :
wall and the top boundary is open with the pressure specified. We initialize the liquid
be at the saturation state and the vapor temperature to increase linearly from the inte
to the solid wall. In the results that follow we present results reflected across the left-h
symmetry boundary.

We first present results of a convergence study to ensure that our grid resolutio
adequate. We consider three grids of resolutiorx 48, 32 x 96, and 64x 192. The solid
wall is kept at a constant temperature of 10 K above the saturation temperature. The
grid simulations initalizes the fifth row of cells with the half cosine wave void profil
a=0.5+4+0.4 cog27Xx/Ao). The coarse and medium resolution grids initialize the voi
field such the interface is located at an identical spatial location. Figure 6 shows the pl
interface calculated on the three grids as the first bubble is about to leave the film. Figu

T T T T T

—_———— Fine grid

——————— Medium grid

Coarse grid

(04
o .
0 . . 2
L Fine grid /”
7.0 | e
_______ Medium grid 7
7
6.0 L ——— Coarse grid

t

FIG. 6. Bubble shape and ratio of vapor void to initial vapor void for three different grid resolutions.
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p—— @ —
L L L L L . s

FIG. 7. Temperature contours spaced 1 K apart for three different grid resolutions. Top, coarse grid; mic
medium grid; bottom, fine grid.

also shows the vapor volume relative to the initial vapor volume. Figures 7 and 8 ¢
temperature contours and contours of both components of velocity, respectively. Fromt
figures we conclude that the medium resolution grid adequately represents the case |
consideration. These simulations were run at a time step equal to one-fourth the capi
limit of the finest resolution grid. Later simulations using the medium resolution grid we
run at a time step approximately three times as large with no discernable difference.
corroborates our earlier statement that observing the capillary limit often results in soluti
converged in time.

Film boiling is a quasi-steady phenomenon and we expect that the transients caused |
artificial prescription of initial conditions will eventually die off leaving us with a numerica
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FIG.8. \elocity contours for three different grid resolutions. Left column, x-direction component, 10 contol
spaced evenly from-1.36 to 1.36 m/s; right column, y-direction component, 10 contours spaced evenly frc
—1.01to 1.01m/s. Top, coarse grid; middle, medium grid; bottom, fine grid.

solution exhibiting quasi-steady periodicity. In our simulations the early transients
typified by the release of a few larger bubbles before the quasi-steady bubble release p:
is realized. Shown in Figs. 9 and 10 are simulation results exhibiting this quasi-ste
behavior for wall superheat values of 5 degrees Celsius and 10 degrees Celsius, respec
The local Nusselt number is calculated as the dimensionless heat flux through the wal

Ao av

Nu= ———— — .
(ﬁwall - 19sat) ay y=0

(41)

The Nusselt number in the figures is an averaged value over the width of the solid wall.
maximum and minimum Nusselt numbers correspond to minimum and maximum aver
film thickness, respectively. The interface plots in Figs. 9 and 10 depict the interface
times near to the minimums and maximums of the averaged Nusselt number. We note
the small bubbles appearing in Figs. 9 and 10 are not properly resolved on the mec
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resolution grid but their appearance on the fine resolution grid is similar. This indicates
they are not likely the flotsam and jetsam commonly appearing with VOF methods on
coarse a grid.

At a wall superheat of 5K we observe that as the bubble is near departure, the
is depleted of vapor and hence the Nusselt number is at the peak value. Similarly, ir
period prior to the bubble formation the vapor film grows hence the Nusselt number i
the minimum value. At a wall superheat of 10 K we make similar observations but note 1
the quasi-steady Nusselt number has two distinct minimums and two distinct maximu
The figure indicates that there two distinct patterns of bubble release defined by the dist
that the previously released bubble has moved. Figure 11 shows clearly the single re

L 1 e L

FIG. 11. Bubble release patterns and velocity fields at time step 35,000 (left) and at time step 40,000 (ri¢
Top, A® =10 K; bottom,A® =5 K.
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pattern for the low-wall superheat case and the two bubble release patterns for the high:
superheat case. Figure 11 was generated by running the simulations on a grid twice the b
as that used in the previous plots. We note that in both cases the quasi-steady behavic
identical as that exhibited in the previous simulations indicating that the behavior descri
is not affected by the location of the outflow boundary.

These simulations exhibit expected quasi-steady behavior in that a steady pattel
bubble release is reached in which ellipsoidal bubbles exit the vapor film and are transpc
away due to buoyant forces. Juric and Tryggvason [3] obtained early transient results
exhibit remarkably different behavior with regard to the bubble release mechanism. In
of their simulations they obtained mushroom shaped bubbles that remained connect
the film by a vapor jet. We obtain similar results by considering a fluid with properties t
give the following dimensionless parameters,

A _g18 M o_346 N _237 ¥ _pges pr—PCe

. ) =192
Pg Mg Kg Cpg ki

Following [3], we define scales for length, velocity, temperature, and heat flux,

lo = (,U«|2/g:0|2) 1/37 (Iog)l/z, pghlg/lolcpl, ,Oghlgkl/PICpllo-
The Morton number and a capillary parametdo( Ca) have the values

4
Mo= “9 _10x106  ca= 2Coo

p pghﬁglo = 0.020,

Except for theMo, these parameters correspond to para-Hydrogen at 8.0 atm [20] and
similar to the parameters used in [3]. We simulate this case using«e3289 grid with the
same boundary conditions as were used in the previous simulations with the exception
the dimensionless wall heat flug,, = 20.0, is specified rather than the wall temperature
The interface is initialized in the fifth row of computational cells by setting the void fractic
for cells in this row tax = 0.5+ 0.4 cog 2 X/ 1,). This corresponds to the non-dimensiona
interface heighty = 7.8+ 0.58 cog2m X/ 1o).

Figure 12 shows the resulting interface plots as well as temperature contours and vel
vector plots for three time cycles during the simulation. The time cycles are chosen tc
spaced a similar distance apart as the time cycle at which plots are given in the sin
simulation of Juric and Tryggvason [3]. These results show a mushroom shape develo
followed by a jet that supplies hot vapor to the developing bubble. The vapor jet persists
the bubble does not pinch off as in the previous simulations. The bubble shapes, the vel
field, and the temperature field are all quite similar to the results obtained in [3]. The «
notable difference is that the skirts found on the large bubbles in [3] have fragmented
formed a smaller bubble in the present simulation. This difference may be due to the
that as interfacial features such as the skirt width approach the size of the grid spacin
VOF method tends to fragment continuous interfaces whereas the method of Tryggv:
does not. We do not compatre the Nusselt number as our initial conditions are quite diffe
in terms of the film thickness and shape which are important factors affecting the Nus
number.
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FIG. 12. Simulation results exhibiting mushroom shaped bubbles. Left columr22.7; center column,

t=422;

right columnt =617.

CONCLUSIONS

VI.

An approach to computing boiling flows based on Young’s enhancement of the V
method has been presented. The interface geometry associated with Young’'s methoc

vides a convenient basis with which to accurately calculate the discontinuous normal c

ponent of the heat flux vector that drives the mass transfer. A similarity solution has b

presented that provides a rigorous test of a computational method’s ability to accure
compute the temperature profile in boiling flows. We feel that Young’s enhancement of V
is a viable alternative to simulating gas-liquid flows including the case with mass trans
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We note extension of Young’s method to three dimensions is straightforward and the n
transfer model described in this paper generalizes easily to three dimensions.
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